Standard

Studying the Effects of Dissolved Noble Gases and High Hydrostatic Pressure on the Spherical DOPC Bilayer Using Molecular Dynamic Simulations. / Pavlyuk, Eugeny; Yungerman, Irena; Bliznyuk, Alice и др.
в: Membranes, Том 14, № 4, 89, 2024.

Результаты исследований: Вклад в журналСтатьяРецензирование

Harvard

APA

Vancouver

Author

BibTeX

@article{8b86a2f75d83479c8fa470a23d98eaaf,
title = "Studying the Effects of Dissolved Noble Gases and High Hydrostatic Pressure on the Spherical DOPC Bilayer Using Molecular Dynamic Simulations",
abstract = "Fine-grained molecular dynamics simulations have been conducted to depict lipid objects enclosed in water and interacting with a series of noble gases dissolved in the medium. The simple point-charge (SPC) water system, featuring a boundary composed of 1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC) molecules, maintained stability throughout the simulation under standard conditions. This allowed for the accurate modeling of the effects of hydrostatic pressure at an ambient pressure of 25 bar. The chosen pressure references the 240 m depth of seawater: the horizon frequently used by commercial divers, who comprise the primary patient population of the neurological complication of inert gas narcosis and the consequences of high-pressure neurological syndrome. To quantify and validate the neurological effects of noble gases and discriminate them from high hydrostatic pressure, we reduced the dissolved gas molar concentration to 1.5%, three times smaller than what we previously tested for the planar bilayer (3.5%). The nucleation and growth of xenon, argon and neon nanobubbles proved consistent with the data from the planar bilayer simulations. On the other hand, hyperbaric helium induces only a residual distorting effect on the liposome, with no significant condensed gas fraction observed within the hydrophobic core. The bubbles were distributed over a large volume—both in the bulk solvent and in the lipid phase—thereby causing substantial membrane distortion. This finding serves as evidence of the validity of the multisite distortion hypothesis for the neurological effect of inert gases at high pressure.",
author = "Eugeny Pavlyuk and Irena Yungerman and Alice Bliznyuk and Yevgeny Moskovitz",
note = "Russian Foundation for Basic Research; grant number: 20-07-00887.",
year = "2024",
doi = "10.3390/membranes14040089",
language = "English",
volume = "14",
journal = "Membranes",
issn = "2077-0375",
publisher = "Multidisciplinary Digital Publishing Institute (MDPI)",
number = "4",

}

RIS

TY - JOUR

T1 - Studying the Effects of Dissolved Noble Gases and High Hydrostatic Pressure on the Spherical DOPC Bilayer Using Molecular Dynamic Simulations

AU - Pavlyuk, Eugeny

AU - Yungerman, Irena

AU - Bliznyuk, Alice

AU - Moskovitz, Yevgeny

N1 - Russian Foundation for Basic Research; grant number: 20-07-00887.

PY - 2024

Y1 - 2024

N2 - Fine-grained molecular dynamics simulations have been conducted to depict lipid objects enclosed in water and interacting with a series of noble gases dissolved in the medium. The simple point-charge (SPC) water system, featuring a boundary composed of 1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC) molecules, maintained stability throughout the simulation under standard conditions. This allowed for the accurate modeling of the effects of hydrostatic pressure at an ambient pressure of 25 bar. The chosen pressure references the 240 m depth of seawater: the horizon frequently used by commercial divers, who comprise the primary patient population of the neurological complication of inert gas narcosis and the consequences of high-pressure neurological syndrome. To quantify and validate the neurological effects of noble gases and discriminate them from high hydrostatic pressure, we reduced the dissolved gas molar concentration to 1.5%, three times smaller than what we previously tested for the planar bilayer (3.5%). The nucleation and growth of xenon, argon and neon nanobubbles proved consistent with the data from the planar bilayer simulations. On the other hand, hyperbaric helium induces only a residual distorting effect on the liposome, with no significant condensed gas fraction observed within the hydrophobic core. The bubbles were distributed over a large volume—both in the bulk solvent and in the lipid phase—thereby causing substantial membrane distortion. This finding serves as evidence of the validity of the multisite distortion hypothesis for the neurological effect of inert gases at high pressure.

AB - Fine-grained molecular dynamics simulations have been conducted to depict lipid objects enclosed in water and interacting with a series of noble gases dissolved in the medium. The simple point-charge (SPC) water system, featuring a boundary composed of 1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC) molecules, maintained stability throughout the simulation under standard conditions. This allowed for the accurate modeling of the effects of hydrostatic pressure at an ambient pressure of 25 bar. The chosen pressure references the 240 m depth of seawater: the horizon frequently used by commercial divers, who comprise the primary patient population of the neurological complication of inert gas narcosis and the consequences of high-pressure neurological syndrome. To quantify and validate the neurological effects of noble gases and discriminate them from high hydrostatic pressure, we reduced the dissolved gas molar concentration to 1.5%, three times smaller than what we previously tested for the planar bilayer (3.5%). The nucleation and growth of xenon, argon and neon nanobubbles proved consistent with the data from the planar bilayer simulations. On the other hand, hyperbaric helium induces only a residual distorting effect on the liposome, with no significant condensed gas fraction observed within the hydrophobic core. The bubbles were distributed over a large volume—both in the bulk solvent and in the lipid phase—thereby causing substantial membrane distortion. This finding serves as evidence of the validity of the multisite distortion hypothesis for the neurological effect of inert gases at high pressure.

UR - http://www.scopus.com/inward/record.url?partnerID=8YFLogxK&scp=85191505421

UR - https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=tsmetrics&SrcApp=tsm_test&DestApp=WOS_CPL&DestLinkType=FullRecord&KeyUT=001210690600001

U2 - 10.3390/membranes14040089

DO - 10.3390/membranes14040089

M3 - Article

VL - 14

JO - Membranes

JF - Membranes

SN - 2077-0375

IS - 4

M1 - 89

ER -

ID: 56691245