The structure and magnetic state of Fe100-xNix alloys (x ≤ 20) quenched from 1100 °С have been studied by means of Mössbauer spectroscopy, X-ray diffraction, transmission electron microscopy, and magnetization measurements. The concentration dependences of the lattice parameter of bcc structure and of spontaneous magnetic moment were measured at room temperature. From the analysis of Mössbauer spectra, concentration dependences of average hyperfine parameters have been determined. Both isomer shift and hyperfine field increase with increasing Ni content in the alloy. Fitting of the spectra with a set of subspectra gives grounds to conclude that the structure of quenched Fe-Ni samples represents a system of bcc regions of varying content, which is formed as a result of separation of the alloy composition. This conclusion is supported by the data of transmission electron microscopy.
Язык оригиналаАнглийский
Номер статьи171132
ЖурналJournal of Alloys and Compounds
Том962
DOI
СостояниеОпубликовано - 1 нояб. 2023

    Предметные области WoS

  • Химия, Физическая
  • Материаловедение, Междисциплинарные труды
  • Металловедение и Металлургия

    Предметные области ASJC Scopus

  • Mechanical Engineering
  • Mechanics of Materials
  • Metals and Alloys
  • Materials Chemistry

ID: 41541192