Ссылки

DOI

The study of the behavior of lava flows plays an important role in predicting, preventing and reducing the consequences of volcanic eruptions. Lava has been used as a building material for centuries and has been a source of nutrients for agriculture, but lava flows remain a threat to human activities. Lava flow process is modelled as a spread of a viscous inhomogeneous incompressible fluid under the influence of gravitational forces. The mathematical model is described by the Navier-Stokes equation and the continuity equation with the corresponding initial and boundary conditions. The model takes into account the variable viscosity of the lava, which depends on the volume fraction of crystals. As a spreading surface, we use the generated topography, which is a realistic slope of a mountainous area, formed taking into account natural geological processes. Numerical simulation is carried out using the meshless SPH method. The results of various cases of modeling of lava flows over the surface are presented. Simulation results are visualized using our custom-developed Cinema Science 3D approach. It allows generating a custom 3D visualization with a simple CSV file configuration. We used it for presenting our results in a natural view, showing underlying terrain as mesh and lava as points, moving and changing according to time and other computation parameters. This view was enough for achieving visualization aims of our research.
Язык оригиналаАнглийский
Страницы (с-по)66 - 76
Число страниц11
ЖурналScientific Visualization
Том14
Номер выпуска5
DOI
СостояниеОпубликовано - 2022

    Уровень публикации

  • Перечень ВАК

    ГРНТИ

  • 29.00.00 ФИЗИКА

    Предметные области ASJC Scopus

  • Computer Vision and Pattern Recognition
  • Программный продукт

ID: 33230435