Standard

Microstructure and Physico-Mechanical Properties of Biocompatible Titanium Alloy Ti-39Nb-7Zr after Rotary Forging. / Illarionov, Anatoly; Mukanov, Galymzhan; Stepanov, Stepan и др.
в: Metals, Том 14, № 5, 497, 2024.

Результаты исследований: Вклад в журналСтатьяРецензирование

Harvard

APA

Vancouver

Author

BibTeX

@article{dfb21cee01444e97b95e5ae0ea2618b3,
title = "Microstructure and Physico-Mechanical Properties of Biocompatible Titanium Alloy Ti-39Nb-7Zr after Rotary Forging",
abstract = "The evolution of microstructure, phase composition and physico-mechanical properties of the biocompatible Ti-39Nb-7Zr alloy (wt.%) after severe plastic deformation by rotary forging (RF) was studied using various methods including light optical microscopy, scanning and transmission electron microscopies, X-ray diffraction, microindentation, tensile testing and investigation of thermophysical properties during continuous heating. The hot-rolled Ti-39Nb-7Zr with initial single β-phase structure is subjected to multi-pass RF at 450 °C with an accumulated degree of true deformation of 1.2, resulting in the formation of a fibrous β-grain structure with imperfect 500 nm subgrains characterized by an increased dislocation density. Additionally, nano-sized α-precipitates formed in the body and along the β-grain boundaries. These structural changes resulted in an increase in microhardness from 215 HV to 280 HV and contact modulus of elasticity from 70 GPa to 76 GPa. The combination of strength and ductility of Ti-39Nb-7Zr after RF approaches that of the widely used Ti-6Al-4V ELI alloy in medicine, however, Ti-39Nb-7Zr does not contain elements with limited biocompatibility and has a modulus of elasticity 1.5 times lower than Ti-6Al-4V ELI. The temperature dependences of physical properties (elastic modulus, heat capacity, thermal diffusivity) of the Ti-39Nb-7Zr alloy after RF are considered and sufficient thermal stability of the alloy up to 450 °C is demonstrated.",
author = "Anatoly Illarionov and Galymzhan Mukanov and Stepan Stepanov and Viktor Kuznetsov and Roman Karelin and Andreev, {Vladimir A.} and Yusupov, {Vladimir Sabitovich} and Andrei Korelin",
note = "The study was financially supported by the Ministry of Science and Higher Education of the Russian Federation under the Development Program of the Ural Federal University named after the First President of Russia B.N. Yeltsin in accordance with the Strategic Academic Leadership Program \u201CPriority-2030\u201D.",
year = "2024",
doi = "10.3390/met14050497",
language = "English",
volume = "14",
journal = "Metals",
issn = "2075-4701",
publisher = "Multidisciplinary Digital Publishing Institute (MDPI)",
number = "5",

}

RIS

TY - JOUR

T1 - Microstructure and Physico-Mechanical Properties of Biocompatible Titanium Alloy Ti-39Nb-7Zr after Rotary Forging

AU - Illarionov, Anatoly

AU - Mukanov, Galymzhan

AU - Stepanov, Stepan

AU - Kuznetsov, Viktor

AU - Karelin, Roman

AU - Andreev, Vladimir A.

AU - Yusupov, Vladimir Sabitovich

AU - Korelin, Andrei

N1 - The study was financially supported by the Ministry of Science and Higher Education of the Russian Federation under the Development Program of the Ural Federal University named after the First President of Russia B.N. Yeltsin in accordance with the Strategic Academic Leadership Program \u201CPriority-2030\u201D.

PY - 2024

Y1 - 2024

N2 - The evolution of microstructure, phase composition and physico-mechanical properties of the biocompatible Ti-39Nb-7Zr alloy (wt.%) after severe plastic deformation by rotary forging (RF) was studied using various methods including light optical microscopy, scanning and transmission electron microscopies, X-ray diffraction, microindentation, tensile testing and investigation of thermophysical properties during continuous heating. The hot-rolled Ti-39Nb-7Zr with initial single β-phase structure is subjected to multi-pass RF at 450 °C with an accumulated degree of true deformation of 1.2, resulting in the formation of a fibrous β-grain structure with imperfect 500 nm subgrains characterized by an increased dislocation density. Additionally, nano-sized α-precipitates formed in the body and along the β-grain boundaries. These structural changes resulted in an increase in microhardness from 215 HV to 280 HV and contact modulus of elasticity from 70 GPa to 76 GPa. The combination of strength and ductility of Ti-39Nb-7Zr after RF approaches that of the widely used Ti-6Al-4V ELI alloy in medicine, however, Ti-39Nb-7Zr does not contain elements with limited biocompatibility and has a modulus of elasticity 1.5 times lower than Ti-6Al-4V ELI. The temperature dependences of physical properties (elastic modulus, heat capacity, thermal diffusivity) of the Ti-39Nb-7Zr alloy after RF are considered and sufficient thermal stability of the alloy up to 450 °C is demonstrated.

AB - The evolution of microstructure, phase composition and physico-mechanical properties of the biocompatible Ti-39Nb-7Zr alloy (wt.%) after severe plastic deformation by rotary forging (RF) was studied using various methods including light optical microscopy, scanning and transmission electron microscopies, X-ray diffraction, microindentation, tensile testing and investigation of thermophysical properties during continuous heating. The hot-rolled Ti-39Nb-7Zr with initial single β-phase structure is subjected to multi-pass RF at 450 °C with an accumulated degree of true deformation of 1.2, resulting in the formation of a fibrous β-grain structure with imperfect 500 nm subgrains characterized by an increased dislocation density. Additionally, nano-sized α-precipitates formed in the body and along the β-grain boundaries. These structural changes resulted in an increase in microhardness from 215 HV to 280 HV and contact modulus of elasticity from 70 GPa to 76 GPa. The combination of strength and ductility of Ti-39Nb-7Zr after RF approaches that of the widely used Ti-6Al-4V ELI alloy in medicine, however, Ti-39Nb-7Zr does not contain elements with limited biocompatibility and has a modulus of elasticity 1.5 times lower than Ti-6Al-4V ELI. The temperature dependences of physical properties (elastic modulus, heat capacity, thermal diffusivity) of the Ti-39Nb-7Zr alloy after RF are considered and sufficient thermal stability of the alloy up to 450 °C is demonstrated.

UR - http://www.scopus.com/inward/record.url?partnerID=8YFLogxK&scp=85194266930

UR - https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=tsmetrics&SrcApp=tsm_test&DestApp=WOS_CPL&DestLinkType=FullRecord&KeyUT=001233288100001

U2 - 10.3390/met14050497

DO - 10.3390/met14050497

M3 - Article

VL - 14

JO - Metals

JF - Metals

SN - 2075-4701

IS - 5

M1 - 497

ER -

ID: 58368445