Standard

Is the brain a "Clifford algebra quantum computer"? book chapter. / Labunets, Valeri; Labunets-Rundblad, Ekaterina v.; Astola, Jaakko.
MATERIALS AND DEVICES FOR PHOTONIC CIRCUITS II: book. ред. / M. Armenise. Том 4453 SPIE, 2001. стр. 134-145 (Proceedings of SPIE; Том 4453).

Результаты исследований: Глава в книге, отчете, сборнике статейМатериалы конференцииРецензирование

Harvard

Labunets, V, Labunets-Rundblad, EV & Astola, J 2001, Is the brain a "Clifford algebra quantum computer"? book chapter. в M Armenise (ред.), MATERIALS AND DEVICES FOR PHOTONIC CIRCUITS II: book. Том. 4453, Proceedings of SPIE, Том. 4453, SPIE, стр. 134-145. https://doi.org/10.1117/12.447643

APA

Labunets, V., Labunets-Rundblad, E. V., & Astola, J. (2001). Is the brain a "Clifford algebra quantum computer"? book chapter. в M. Armenise (Ред.), MATERIALS AND DEVICES FOR PHOTONIC CIRCUITS II: book (Том 4453, стр. 134-145). (Proceedings of SPIE; Том 4453). SPIE. https://doi.org/10.1117/12.447643

Vancouver

Labunets V, Labunets-Rundblad EV, Astola J. Is the brain a "Clifford algebra quantum computer"? book chapter. в Armenise M, Редактор, MATERIALS AND DEVICES FOR PHOTONIC CIRCUITS II: book. Том 4453. SPIE. 2001. стр. 134-145. (Proceedings of SPIE). doi: 10.1117/12.447643

Author

Labunets, Valeri ; Labunets-Rundblad, Ekaterina v. ; Astola, Jaakko. / Is the brain a "Clifford algebra quantum computer"? book chapter. MATERIALS AND DEVICES FOR PHOTONIC CIRCUITS II: book. Редактор / M. Armenise. Том 4453 SPIE, 2001. стр. 134-145 (Proceedings of SPIE).

BibTeX

@inproceedings{a58b6259b6064241a592ba8479c12bcd,
title = "Is the brain a {"}Clifford algebra quantum computer{"}?: book chapter",
abstract = "We propose a novel method to calculate invariants of colour and multicolour images. It employs an idea of classical and quantum hypercomplex numbers and combines it with the idea of classical and quantum number theoretical transforms over hypercomplex algebras, which reduce the computational complexity of the global recognition algorithm for nD k-multispectral images from O(knN(n+1)) to O(kN(n) log N) and to O(kn log N), respectively. Our hypotheses are 1) the brain of primates calculates hypercomplex-valued invariants of an image during recognizing, 2) visual systems of animals with different evolutionary history use different hypercomplex algebras. The main goal of the paper is to show that quantum Clifford algebras can be used to solve pattern recognition in multispectral environment in a natural and effective manner.",
author = "Valeri Labunets and Labunets-Rundblad, {Ekaterina v.} and Jaakko Astola",
year = "2001",
doi = "10.1117/12.447643",
language = "English",
isbn = "0-8194-4167-8",
volume = "4453",
series = "Proceedings of SPIE",
publisher = "SPIE",
pages = "134--145",
editor = "M. Armenise",
booktitle = "MATERIALS AND DEVICES FOR PHOTONIC CIRCUITS II",
address = "United States",

}

RIS

TY - GEN

T1 - Is the brain a "Clifford algebra quantum computer"?

T2 - book chapter

AU - Labunets, Valeri

AU - Labunets-Rundblad, Ekaterina v.

AU - Astola, Jaakko

PY - 2001

Y1 - 2001

N2 - We propose a novel method to calculate invariants of colour and multicolour images. It employs an idea of classical and quantum hypercomplex numbers and combines it with the idea of classical and quantum number theoretical transforms over hypercomplex algebras, which reduce the computational complexity of the global recognition algorithm for nD k-multispectral images from O(knN(n+1)) to O(kN(n) log N) and to O(kn log N), respectively. Our hypotheses are 1) the brain of primates calculates hypercomplex-valued invariants of an image during recognizing, 2) visual systems of animals with different evolutionary history use different hypercomplex algebras. The main goal of the paper is to show that quantum Clifford algebras can be used to solve pattern recognition in multispectral environment in a natural and effective manner.

AB - We propose a novel method to calculate invariants of colour and multicolour images. It employs an idea of classical and quantum hypercomplex numbers and combines it with the idea of classical and quantum number theoretical transforms over hypercomplex algebras, which reduce the computational complexity of the global recognition algorithm for nD k-multispectral images from O(knN(n+1)) to O(kN(n) log N) and to O(kn log N), respectively. Our hypotheses are 1) the brain of primates calculates hypercomplex-valued invariants of an image during recognizing, 2) visual systems of animals with different evolutionary history use different hypercomplex algebras. The main goal of the paper is to show that quantum Clifford algebras can be used to solve pattern recognition in multispectral environment in a natural and effective manner.

UR - https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=tsmetrics&SrcApp=tsm_test&DestApp=WOS_CPL&DestLinkType=FullRecord&KeyUT=000173939400017

UR - http://www.scopus.com/inward/record.url?partnerID=8YFLogxK&scp=0035761231

U2 - 10.1117/12.447643

DO - 10.1117/12.447643

M3 - Conference contribution

SN - 0-8194-4167-8

VL - 4453

T3 - Proceedings of SPIE

SP - 134

EP - 145

BT - MATERIALS AND DEVICES FOR PHOTONIC CIRCUITS II

A2 - Armenise, M.

PB - SPIE

ER -

ID: 42978858