Standard

Development of a Two-Stage Hydrometallurgical Process for Gold–Antimony Concentrate Treatment from the Olimpiadinskoe Deposit. / Rusalev, Rostislav; Rogozhnikov, Denis; Dizer, Oleg и др.
в: Materials, Том 16, № 13, 4767, 2023.

Результаты исследований: Вклад в журналСтатьяРецензирование

Harvard

APA

Vancouver

Author

BibTeX

@article{5000a1548b48495fb805e075f9afe8f3,
title = "Development of a Two-Stage Hydrometallurgical Process for Gold–Antimony Concentrate Treatment from the Olimpiadinskoe Deposit",
abstract = "An integrated two-stage metallurgical process has been developed to process concentrates from the Olimpiadinskoe deposit, which contain high levels of antimony and arsenic. The optimal parameters for the alkaline sulfide leaching process of the initial concentrate from the Olimpiadinskoe deposit were determined to achieve the maximum extraction of antimony at a 99% level. The recommended parameters include an L:S ratio of 4.5:1, a sodium sulfide concentration of 61 g/L, a sodium hydroxide concentration of 16.5 g/L, a duration of 3 h, and a temperature of 50 °C. A synergistic effect of co-processing alkaline sulfide leach cakes with sulfuric and nitric acids was observed. The pre-treatment step reduced the nitric acid composition by converting carbonates into gypsum and increased the arsenic extraction by 15% during subsequent nitric acid leaching. The laboratory research on the nitric acid leaching of decarbonized cake established the key parameters for the maximum iron and arsenic extraction in solution (92% and 98%, respectively), including an L:S ratio of 9:1, a nitric acid concentration of 6 mol/L, and a time of 90 min. Full polynomial equations for the iron and arsenic extraction from the decarbonized cake were derived. The model demonstrated a high relevance, as evidenced by the determination coefficients (R2) of 96.7% for iron and 93.2% for arsenic. The technology also achieved a high gold recovery rate of 95% from the two-stage alkaline sulfide and nitric acid leach cake. Furthermore, the maximum deposition of arsenic from the nitrate leach solution in the form of insoluble As2S3 was determined to be 99.9%. A basic technological flow sheet diagram for processing the flotation gold–antimony concentrate from the Olimpiadinskoe deposit was developed, including two stages: the production of metallic antimony and the gold extraction from the nitric leach cake. {\textcopyright} 2023 by the authors.",
author = "Rostislav Rusalev and Denis Rogozhnikov and Oleg Dizer and Dmitry Golovkin and Kirill Karimov",
note = "This work was funded by the Russian Science Foundation Project No. 22-79-10290. The XRF and XRD analyses were funded by the State Assignment, grant No. 075-03-2021-051/5 (FEUZ-2021-0017).",
year = "2023",
doi = "10.3390/ma16134767",
language = "English",
volume = "16",
journal = "Materials",
issn = "1996-1944",
publisher = "Multidisciplinary Digital Publishing Institute (MDPI)",
number = "13",

}

RIS

TY - JOUR

T1 - Development of a Two-Stage Hydrometallurgical Process for Gold–Antimony Concentrate Treatment from the Olimpiadinskoe Deposit

AU - Rusalev, Rostislav

AU - Rogozhnikov, Denis

AU - Dizer, Oleg

AU - Golovkin, Dmitry

AU - Karimov, Kirill

N1 - This work was funded by the Russian Science Foundation Project No. 22-79-10290. The XRF and XRD analyses were funded by the State Assignment, grant No. 075-03-2021-051/5 (FEUZ-2021-0017).

PY - 2023

Y1 - 2023

N2 - An integrated two-stage metallurgical process has been developed to process concentrates from the Olimpiadinskoe deposit, which contain high levels of antimony and arsenic. The optimal parameters for the alkaline sulfide leaching process of the initial concentrate from the Olimpiadinskoe deposit were determined to achieve the maximum extraction of antimony at a 99% level. The recommended parameters include an L:S ratio of 4.5:1, a sodium sulfide concentration of 61 g/L, a sodium hydroxide concentration of 16.5 g/L, a duration of 3 h, and a temperature of 50 °C. A synergistic effect of co-processing alkaline sulfide leach cakes with sulfuric and nitric acids was observed. The pre-treatment step reduced the nitric acid composition by converting carbonates into gypsum and increased the arsenic extraction by 15% during subsequent nitric acid leaching. The laboratory research on the nitric acid leaching of decarbonized cake established the key parameters for the maximum iron and arsenic extraction in solution (92% and 98%, respectively), including an L:S ratio of 9:1, a nitric acid concentration of 6 mol/L, and a time of 90 min. Full polynomial equations for the iron and arsenic extraction from the decarbonized cake were derived. The model demonstrated a high relevance, as evidenced by the determination coefficients (R2) of 96.7% for iron and 93.2% for arsenic. The technology also achieved a high gold recovery rate of 95% from the two-stage alkaline sulfide and nitric acid leach cake. Furthermore, the maximum deposition of arsenic from the nitrate leach solution in the form of insoluble As2S3 was determined to be 99.9%. A basic technological flow sheet diagram for processing the flotation gold–antimony concentrate from the Olimpiadinskoe deposit was developed, including two stages: the production of metallic antimony and the gold extraction from the nitric leach cake. © 2023 by the authors.

AB - An integrated two-stage metallurgical process has been developed to process concentrates from the Olimpiadinskoe deposit, which contain high levels of antimony and arsenic. The optimal parameters for the alkaline sulfide leaching process of the initial concentrate from the Olimpiadinskoe deposit were determined to achieve the maximum extraction of antimony at a 99% level. The recommended parameters include an L:S ratio of 4.5:1, a sodium sulfide concentration of 61 g/L, a sodium hydroxide concentration of 16.5 g/L, a duration of 3 h, and a temperature of 50 °C. A synergistic effect of co-processing alkaline sulfide leach cakes with sulfuric and nitric acids was observed. The pre-treatment step reduced the nitric acid composition by converting carbonates into gypsum and increased the arsenic extraction by 15% during subsequent nitric acid leaching. The laboratory research on the nitric acid leaching of decarbonized cake established the key parameters for the maximum iron and arsenic extraction in solution (92% and 98%, respectively), including an L:S ratio of 9:1, a nitric acid concentration of 6 mol/L, and a time of 90 min. Full polynomial equations for the iron and arsenic extraction from the decarbonized cake were derived. The model demonstrated a high relevance, as evidenced by the determination coefficients (R2) of 96.7% for iron and 93.2% for arsenic. The technology also achieved a high gold recovery rate of 95% from the two-stage alkaline sulfide and nitric acid leach cake. Furthermore, the maximum deposition of arsenic from the nitrate leach solution in the form of insoluble As2S3 was determined to be 99.9%. A basic technological flow sheet diagram for processing the flotation gold–antimony concentrate from the Olimpiadinskoe deposit was developed, including two stages: the production of metallic antimony and the gold extraction from the nitric leach cake. © 2023 by the authors.

UR - http://www.scopus.com/inward/record.url?partnerID=8YFLogxK&scp=85164808500

UR - https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=tsmetrics&SrcApp=tsm_test&DestApp=WOS_CPL&DestLinkType=FullRecord&KeyUT=001030980600001

U2 - 10.3390/ma16134767

DO - 10.3390/ma16134767

M3 - Article

VL - 16

JO - Materials

JF - Materials

SN - 1996-1944

IS - 13

M1 - 4767

ER -

ID: 41987146