Standard

СТРУКТУРНЫЕ ИЗМЕНЕНИЯ РАСПЛАВОВ ЖАРОПРОЧНЫХ НИКЕЛЕВЫХ СПЛАВОВ. / Тягунов, Андрей Геннадьевич.
в: Вестник Южно-Уральского государственного университета. Серия: Металлургия, Том 16, № 4, 2016, стр. 16-22.

Результаты исследований: Вклад в журналСтатья

Harvard

Тягунов, АГ 2016, 'СТРУКТУРНЫЕ ИЗМЕНЕНИЯ РАСПЛАВОВ ЖАРОПРОЧНЫХ НИКЕЛЕВЫХ СПЛАВОВ', Вестник Южно-Уральского государственного университета. Серия: Металлургия, Том. 16, № 4, стр. 16-22. https://doi.org/10.14529/met160402

APA

Тягунов, А. Г. (2016). СТРУКТУРНЫЕ ИЗМЕНЕНИЯ РАСПЛАВОВ ЖАРОПРОЧНЫХ НИКЕЛЕВЫХ СПЛАВОВ. Вестник Южно-Уральского государственного университета. Серия: Металлургия, 16(4), 16-22. https://doi.org/10.14529/met160402

Vancouver

Тягунов АГ. СТРУКТУРНЫЕ ИЗМЕНЕНИЯ РАСПЛАВОВ ЖАРОПРОЧНЫХ НИКЕЛЕВЫХ СПЛАВОВ. Вестник Южно-Уральского государственного университета. Серия: Металлургия. 2016;16(4):16-22. doi: 10.14529/met160402

Author

Тягунов, Андрей Геннадьевич. / СТРУКТУРНЫЕ ИЗМЕНЕНИЯ РАСПЛАВОВ ЖАРОПРОЧНЫХ НИКЕЛЕВЫХ СПЛАВОВ. в: Вестник Южно-Уральского государственного университета. Серия: Металлургия. 2016 ; Том 16, № 4. стр. 16-22.

BibTeX

@article{13065f9b09904db29bd8b4b0de4dab25,
title = "СТРУКТУРНЫЕ ИЗМЕНЕНИЯ РАСПЛАВОВ ЖАРОПРОЧНЫХ НИКЕЛЕВЫХ СПЛАВОВ",
abstract = "Расплавы жаропрочных никелевых сплавов сразу же после плавления имеют макрогомогенную, но микронеоднородную структуру. Дальнейший нагрев расплавов вызывает структурные изменения. Кинетика изменений фиксируется на политермах физических свойств: удельного электросопротивления, кинематической вязкости и плотности. Измерения проводились при нагреве и охлаждении. Было исследовано более 50 марок сплавов на основе никеля. Все политермы после нагрева до определенной температуры характеризуются несовпадением прямого и обратного хода - явлением гистерезиса. После нагрева до следующей температуры, определенной для каждого состава сплава, несовпадение ветвей становится максимальным и постоянным. В соответствии с моделью Архарова - Новохатского вблизи температур плавления расплавы состоят из атомных микрогруппировок с ближним порядком и неупорядоченной зоны. Состав атомных скоплений повторяет структуру твердого металла. Поскольку основной основными избыточными фазами в этих сплавах являются интерметаллидные выделения на основе Ni3(Al, Ti) и карбиды типа MC, то и основа кластеров расплава будет состоять из тех же элементов. Нагрев расплава приводит к уменьшению размеров кластеров и увеличению межкластерного пространства. Нагрев выше второй определенной температуры, зафиксированной в результате изучения физических свойств, приведет к полному распаду атомных группировок. Распределение легирующих элементов выравнивается по всему объему расплава. Жидкий металл становится более равновесным. Такое состояние характеризуется макрогомогенностью и микрооднородностью. На этом эффекте базируются технологии высокотемпературной обработки расплава, существенно повышающие качество металлопродукции.",
author = "Тягунов, {Андрей Геннадьевич}",
year = "2016",
doi = "10.14529/met160402",
language = "Русский",
volume = "16",
pages = "16--22",
journal = "Вестник Южно-Уральского государственного университета. Серия: Металлургия",
issn = "1990-8482",
publisher = "Южно-Уральский государственный университет (национальный исследовательский университет)",
number = "4",

}

RIS

TY - JOUR

T1 - СТРУКТУРНЫЕ ИЗМЕНЕНИЯ РАСПЛАВОВ ЖАРОПРОЧНЫХ НИКЕЛЕВЫХ СПЛАВОВ

AU - Тягунов, Андрей Геннадьевич

PY - 2016

Y1 - 2016

N2 - Расплавы жаропрочных никелевых сплавов сразу же после плавления имеют макрогомогенную, но микронеоднородную структуру. Дальнейший нагрев расплавов вызывает структурные изменения. Кинетика изменений фиксируется на политермах физических свойств: удельного электросопротивления, кинематической вязкости и плотности. Измерения проводились при нагреве и охлаждении. Было исследовано более 50 марок сплавов на основе никеля. Все политермы после нагрева до определенной температуры характеризуются несовпадением прямого и обратного хода - явлением гистерезиса. После нагрева до следующей температуры, определенной для каждого состава сплава, несовпадение ветвей становится максимальным и постоянным. В соответствии с моделью Архарова - Новохатского вблизи температур плавления расплавы состоят из атомных микрогруппировок с ближним порядком и неупорядоченной зоны. Состав атомных скоплений повторяет структуру твердого металла. Поскольку основной основными избыточными фазами в этих сплавах являются интерметаллидные выделения на основе Ni3(Al, Ti) и карбиды типа MC, то и основа кластеров расплава будет состоять из тех же элементов. Нагрев расплава приводит к уменьшению размеров кластеров и увеличению межкластерного пространства. Нагрев выше второй определенной температуры, зафиксированной в результате изучения физических свойств, приведет к полному распаду атомных группировок. Распределение легирующих элементов выравнивается по всему объему расплава. Жидкий металл становится более равновесным. Такое состояние характеризуется макрогомогенностью и микрооднородностью. На этом эффекте базируются технологии высокотемпературной обработки расплава, существенно повышающие качество металлопродукции.

AB - Расплавы жаропрочных никелевых сплавов сразу же после плавления имеют макрогомогенную, но микронеоднородную структуру. Дальнейший нагрев расплавов вызывает структурные изменения. Кинетика изменений фиксируется на политермах физических свойств: удельного электросопротивления, кинематической вязкости и плотности. Измерения проводились при нагреве и охлаждении. Было исследовано более 50 марок сплавов на основе никеля. Все политермы после нагрева до определенной температуры характеризуются несовпадением прямого и обратного хода - явлением гистерезиса. После нагрева до следующей температуры, определенной для каждого состава сплава, несовпадение ветвей становится максимальным и постоянным. В соответствии с моделью Архарова - Новохатского вблизи температур плавления расплавы состоят из атомных микрогруппировок с ближним порядком и неупорядоченной зоны. Состав атомных скоплений повторяет структуру твердого металла. Поскольку основной основными избыточными фазами в этих сплавах являются интерметаллидные выделения на основе Ni3(Al, Ti) и карбиды типа MC, то и основа кластеров расплава будет состоять из тех же элементов. Нагрев расплава приводит к уменьшению размеров кластеров и увеличению межкластерного пространства. Нагрев выше второй определенной температуры, зафиксированной в результате изучения физических свойств, приведет к полному распаду атомных группировок. Распределение легирующих элементов выравнивается по всему объему расплава. Жидкий металл становится более равновесным. Такое состояние характеризуется макрогомогенностью и микрооднородностью. На этом эффекте базируются технологии высокотемпературной обработки расплава, существенно повышающие качество металлопродукции.

UR - http://elibrary.ru/item.asp?id=27496583

U2 - 10.14529/met160402

DO - 10.14529/met160402

M3 - Статья

VL - 16

SP - 16

EP - 22

JO - Вестник Южно-Уральского государственного университета. Серия: Металлургия

JF - Вестник Южно-Уральского государственного университета. Серия: Металлургия

SN - 1990-8482

IS - 4

ER -

ID: 1415653