Type 2 diabetes is characterized by hyperglycemia and a relative loss of β–cell function. Our research investigated the antidiabetic potential of betulin, a pentacyclic triterpenoid found primarily in birch bark and, intriguingly, in a few marine organisms. Betulin has been shown to possess diverse biological activities, including antioxidant and antidiabetic activities; however, no studies have fully explored the effects of betulin on the pancreas and pancreatic islets. In this study, we investigated the effect of betulin on streptozotocin–nicotinamide (STZ)-induced diabetes in female Wistar rats. Betulin was prepared as an emulsion, and intragastric treatments were administered at doses of 20 and 50 mg/kg for 28 days. The effect of treatment was assessed by analyzing glucose parameters such as fasting blood glucose, hemoglobin A1C, and glucose tolerance; hepatic and renal biomarkers; lipid peroxidation; antioxidant enzymes; immunohistochemical analysis; and hematological indices. Administration of betulin improved the glycemic response and decreased α–amylase activity in diabetic rats, although insulin levels and homeostatic model assessment for insulin resistance (HOMA–IR) scores remained unchanged. Furthermore, betulin lowered the levels of hepatic biomarkers (aspartate aminotransferase, alanine aminotransferase, and alpha-amylase activities) and renal biomarkers (urea and creatine), in addition to improving glutathione levels and preventing the elevation of lipid peroxidation in diabetic animals. We also found that betulin promoted the regeneration of β–cells in a dose-dependent manner but did not have toxic effects on the pancreas. In conclusion, betulin at a dose of 50 mg/kg exerts a pronounced protective effect against cytolysis, diabetic nephropathy, and damage to the acinar pancreas and may be a potential treatment option for diabetes.
Original languageEnglish
Article number2166
JournalInternational Journal of Molecular Sciences
Volume25
Issue number4
DOIs
Publication statusPublished - 2024

    ASJC Scopus subject areas

  • Inorganic Chemistry
  • Organic Chemistry
  • Spectroscopy
  • Physical and Theoretical Chemistry
  • Computer Science Applications
  • Molecular Biology
  • Catalysis

    WoS ResearchAreas Categories

  • Biochemistry & Molecular Biology
  • Chemistry, Multidisciplinary

ID: 53810597