The hybrid hydrogel materials meet important social challenges, including the photocatalytic purification of water and bio-medical applications. Here, we demonstrate two scenarios of polyacrylamide-TiO2 (PAAm@TiO2) composite hydrogel design using calcium alginate (Alg-Ca) or Keplerate-type polyoxometalates (POMs) {Mo-132} tuning the polymer network structure. Calcium alginate molding allowed us to produce polyacrylamide-based beads with an interpenetrating network filled with TiO2 nanoparticles Alg-Ca@PAAm@TiO2, demonstrating the photocatalytic activity towards the methyl orange dye bleaching. Contrastingly, in the presence of the POM, the biocompatible PAAm@TiO2@Mo-132 composite hydrogel was produced through the photo-polymerization approach (under 365 nm UV light) using vitamin B2 as initiator. For both types of the synthesized hydrogels, the thermodynamic compatibility, swelling and photocatalytic behavior were studied. The influence of the hydrogel composition on its structure and the mesh size of its network were evaluated using the Flory-Rehner equation. The proposed synthetic strategies for the composite hydrogel production can be easily scaled up to the industrial manufacturing of the photocatalytic hydrogel beads suitable for the water treatment purposes or the biocompatible hydrogel patch for medical application.
Original languageEnglish
Article number92
JournalInorganics
Volume11
Issue number3
DOIs
Publication statusPublished - 2023

    WoS ResearchAreas Categories

  • Chemistry, Inorganic & Nuclear

    ASJC Scopus subject areas

  • Inorganic Chemistry

ID: 37082042