The thermocatalytic oxidative potential of various supported noble metal catalysts (SNMCs) is well-known for hazardous volatile organic compounds (VOCs), e.g., formaldehyde (FA) and toluene. However, little is known about SNMC performance against ambient VOC pollution with low concentration (subppm levels) relative to industrial effuluents with high concentrations (several hundred ppm). Here, the thermocatalytic oxidation performance of a titanium dioxide (TiO2)-supported platinum catalyst (Pt/TiO2) has been evaluated for a low-concentration binary mixture of FA and toluene at low temperatures and in the dark. A sample of TiO2 containing 1 wt% Pt with thermal reduction pre-treatment under hydrogen achieved 100 % conversion of FA (500 ppb) and toluene (100 ppb) at 130 °C and a gas hourly velocity of 59,701 h−1. Its catalytic activity was lowered by either a decrease in catalyst mass or an increase in VOC concentration, relative humidity, or flow rate. In situ diffuse reflectance infrared Fourier transform spectroscopy, density functional theory simulations, and molecular oxygen (O2) temperature–programmed desorption experiments were used to identify possible VOC oxidation pathways, reaction mechanisms, and associated surface phenomena. The present work is expected to offer insights into the utility of metal oxide-supported Pt catalysts for the low-temperature oxidative removal of gaseous VOCs in the dark, primarily for indoor air quality management.
Original languageEnglish
Article number169612
JournalScience of the Total Environment
Volume915
DOIs
Publication statusPublished - 1 Mar 2024

    ASJC Scopus subject areas

  • Environmental Engineering
  • Pollution
  • Environmental Chemistry
  • Waste Management and Disposal

ID: 51610274