The molecular structure and vibrational spectra of six 1,2,3-triazoles-containing molecules with possible anticancer activity were investigated. For two of them, the optimized geometry was determined in the monomer, cyclic dimer and stacking forms using the B3LYP, M06-2X and MP2 methods implemented in the GAUSSIAN-16 program package. The effect of the para-substitution on the aryl ring was evaluated based on changes in the molecular structure and atomic charge distribution of the triazole ring. An increment in the positive N4 charge was linearly related to a decrease in both the aryl ring and the carboxylic group rotation, with respect to the triazole ring, and by contrast, to an increment in the pyrrolidine ring rotation. Anionic formation had a larger effect on the triazole ring structure than the electronic nature of the different substituents on the aryl ring. Several relationships were obtained that could facilitate the selection of substituents on the triazole ring for their further synthesis. The observed IR and Raman bands in the solid state of two of these compounds were accurately assigned according to monomer and dimer form calculations, together with the polynomic scaling equation procedure (PSE). The large red-shift of the C=O stretching mode indicates that strong H-bonds in the dimer form appear in the solid state through this group. © 2023 by the authors.
Original languageEnglish
Article number14001
JournalInternational Journal of Molecular Sciences
Volume24
Issue number18
DOIs
Publication statusPublished - 2023

    ASJC Scopus subject areas

  • Inorganic Chemistry
  • Organic Chemistry
  • Spectroscopy
  • Physical and Theoretical Chemistry
  • Computer Science Applications
  • Molecular Biology
  • Catalysis

    WoS ResearchAreas Categories

  • Biochemistry & Molecular Biology
  • Chemistry, Multidisciplinary

ID: 46009989