FeNi films were prepared using the DC magnetron sputtering technique with an oblique deposition arrangement. Multilayers with different orientations of the magnetic anisotropy axes were obtained thanks to a rotary sample holder inside the vacuum chamber. Magnetic properties were studied using magneto–optical Kerr microscopy and a vibrating sample magnetometer. Single-layered FeNi films having thicknesses as high as 10 nm and 40 nm show in-plane uniaxial easy magnetization axes produced by the oblique incidence of incoming components of the beams. Magnetic anisotropy field for four-layered samples with orthogonal uniaxial magnetic anisotropy axes in the adjacent layers and the thickness of individual layers of 10 nm and 40 nm turned out to be less than in single-layered films. The magnetic properties peculiarities of the eight-layered sample FeNi (10 nm) × 8 obtained by rotation of the sample holder by 45° before deposition of each subsequent layer suggest the formation of a helix-like magnetic structure through the thickness of the multilayered sample similar to the magnetization arrangement in the Bloch-type magnetic domain wall. © 2023 by the authors.
Original languageEnglish
Article number81
Issue number1
Publication statusPublished - 2024

    ASJC Scopus subject areas

  • Chemical Engineering (miscellaneous)
  • Process Chemistry and Technology
  • Bioengineering

    WoS ResearchAreas Categories

  • Engineering, Chemical

ID: 52302009