This paper reports the synthesis of four types of annulated pyranoindole congeners: pyrano[3,2-f]indole, pyrano[2,3-g]indole, pyrano[2,3-f]indole, and pyrano[2,3-e]indole and photophysical studies in this series. The synthesis of pyrano[3,2-f], [2,3-g], and [2,3-e]indoles involve a tandem of Bischler–Möhlau reaction of 3-aminophenol with benzoin to form 6-hydroxy- or 4-hydroxyindole followed by Pechmann condensation of these hydroxyindoles with β-ketoesters. Pyrano[2,3-f]indoles were synthesized through the Nenitzescu reaction of p-benzoquinone and ethyl aminocrotonates and subsequent Pechmann condensation of the obtained 5-hydroxyindole derivatives. Among the pyranoindoles studied, the most promising were pyrano[3,2-f] and [2,3-g]indoles. These compounds were characterized by moderate to high quantum yields (30–89%) and a large (9000–15,000 cm−1) Stokes shift. More detailed photophysical studies were carried out for a series of the most promising derivatives of pyrano[3,2-f] and [2,3-g]indoles to demonstrate their positive solvatochromism, and the data collected was analyzed using Lippert-Mataga equation. Quantum chemical calculations were performed to deepen the knowledge of the absorption and emission properties of pyrano[3,2-f] and [2,3-g]indoles as well as to explain their unusual geometries and electronic structures.
Original languageEnglish
Article number8867
JournalMolecules
Volume27
Issue number24
DOIs
Publication statusPublished - 7 Dec 2022

    ASJC Scopus subject areas

  • Molecular Medicine
  • Chemistry (miscellaneous)
  • Analytical Chemistry
  • Organic Chemistry
  • Physical and Theoretical Chemistry
  • Medicine(all)
  • Drug Discovery
  • Pharmaceutical Science

    WoS ResearchAreas Categories

  • Biochemistry & Molecular Biology
  • Chemistry, Multidisciplinary

ID: 33229703