The absorption of light in the near-infrared region of the electromagnetic spectrum by Au-hyperdoped Si has been observed. While silicon photodetectors in this range are currently being produced, their efficiency is low. Here, using the nanosecond and picosecond laser hyperdoping of thin amorphous Si films, their compositional (energy-dispersion X-ray spectroscopy), chemical (X-ray photoelectron spectroscopy), structural (Raman spectroscopy) and IR spectroscopic characterization, we comparatively demonstrated a few promising regimes of laser-based silicon hyperdoping with gold. Our results indicate that the optimal efficiency of impurity-hyperdoped Si materials has yet to be achieved, and we discuss these opportunities in light of our results. © 2023 by the authors.
Original languageEnglish
Article number4439
JournalMaterials
Volume16
Issue number12
DOIs
Publication statusPublished - 2023

    WoS ResearchAreas Categories

  • Chemistry, Physical
  • Materials Science, Multidisciplinary
  • Metallurgy & Metallurgical Engineering
  • Physics, Applied
  • Physics, Condensed Matter

    ASJC Scopus subject areas

  • Condensed Matter Physics
  • General Materials Science

ID: 41557486