The enzyme Phosphodiesterase 10A (PDE10A) plays a regulatory role in the cAMP/protein kinase A (PKA) signaling pathway by means of hydrolyzing cAMP and cGMP. PDE10A emerges as a relevant pharmacological drug target for neurological conditions such as psychosis, schizophrenia, Parkinson's, Huntington’s disease, and other memory-related disorders. In the current study, we subjected a set of 1,2,3-triazoles to be explored as PDE10A inhibitors using diverse computational approaches, including molecular docking, classical molecular dynamics (MD) simulations, Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) calculations, steered MD, and umbrella sampling simulations. Molecular docking of cocrystallized ligands papaverine and PFJ, along with a set of in-house synthesized molecules, suggested that molecule 3i haded the highest binding affinity, followed by 3h and 3j. Furthermore, the structural stability studies using MD and MM-PBSA indicated that the 3h and 3j formed stable complexes with PDE10A. The binding free energy of −240.642 kJ/mol and −201.406 kJ/mol was observed for 3h and 3j, respectively. However, the cocrystallized ligands papaverine and PFJ exhibited comparitively higher binding free energy values of −202.030 kJ/mol and −138.764 kJ/mol, respectively. Additionally, steered MD and umbrella sampling simulations provided conclusive evidence that the molecules 3h and 3j could be exploited as promising candidates to target PDE10A.
Original languageEnglish
Pages (from-to)9424-9436
Number of pages13
JournalJournal of Biomolecular Structure and Dynamics
Volume41
Issue number19
DOIs
Publication statusPublished - 2023

    WoS ResearchAreas Categories

  • Biochemistry & Molecular Biology
  • Biophysics

    ASJC Scopus subject areas

  • Structural Biology
  • Molecular Biology

ID: 47872588