4-Hydroxy-2-pyrones are of interest as potential biorenewable molecules for a sustainable transition from biomass feedstock to valuable chemical products. This review focuses on the methodologies for the synthesis of 4-hydroxy-2-pyrones published over the last 20 years. These pyrones as polyketides are widespread in Nature and possess versatile bioactivity that makes them an attractive target for synthesis and modification. Biosynthetic paths of the pyrones are actively developed and used as biotechnological approaches for the construction of natural and unnatural polysubstituted 4-hydroxy-2-pyrones. The major synthetical methods are biomimetic and are based on the cyclization of tricarbonyl compounds. Novel chemical methods of de novo synthesis based on alkyne cyclizations using transition metal complexes and ketene transformations allow for straightforward access to 4-hydroxy-2-pyrones and have been applied for the construction of natural products. Possible directions for further pyrone ring modification are discussed.
Original languageEnglish
Pages (from-to)539-561
Number of pages23
JournalOrganics
Volume4
Issue number4
DOIs
Publication statusPublished - 2023

    WoS ResearchAreas Categories

  • Chemistry, Organic

ID: 51667625