Standard

Harvard

APA

Vancouver

Author

BibTeX

@article{1bcb1dafefd142b7b7c39c844b8f11ab,
title = "О механизмах трансмутации висмута в расплаве BiPb под воздействием наносекундных электромагнитных импульсов",
abstract = "Воздействие наносекундных электромагнитных импульсов на расплав висмут-свинец позволило установить увеличение доли свинца благодаря превращению Bi → Pb. В качестве вероятного механизма перехода предполагался электронный захват. Допускалось также наличие в исходных образцах изотопов Bi210m, Bi208, Bi207. Однако захват электрона характерен лишь для Bi208, Bi207. Природный висмут представлен одним изотопом Bi209. Поэтому следует рассмотреть варианты превращений именно этого изотопа. Предполагается, что ведущую роль в превращении играет паровая фаза. Показано, что при наличии водяного пара возможно возрастание массы Δm > 0 расплава, как за счет взаимодействия ядер Bi209 с «квазинейтронами» (включая «нейтроиды» Сантилли и «гидрино» Миллса), так и с «псевдопротонами» и «протоидами» (два последних термина относятся к связанным состояниям протона с двумя электронами). Размеры cвязанных состояний существенно меньше боровского радиуса RB ≈ 5 ∙10−11 м. Приращение доли свинца происходит за счет изотопа Pb210. Напротив, интенсификация α-распадов в условиях электромагнитного импульсного воздействия должна сопровождаться приращением доли свинца за счет изотопа Pb206 и снижением массы расплава. В условиях изоляции расплава от водяного пара можно ожидать убыли массы расплава Δm < 0 за счет α-излучения ядер Bi209 с последующим улетучиванием гелия и накоплением изотопа Tl205. Распад ядер обусловлен интенсификацией туннельного эффекта. При этом не следует ожидать увеличения доли свинца за счет изотопа Pb207. Важно, что оценка значений Δm ~ 0.1 г для реальных экспериментов указывает на возможность ее надежного измерения. В заключение кратко обсуждаются перспективы исследований.",
keywords = "Bismuth transmutation, Electromagnetic nano-pulses, Quasineutrons, Quasipositronium, Tunnel effect, electromagnetic nano-pulses, VARIANTS, tunnel effect, quasineutrons, quasipositronium, bismuth transmutation",
author = "Kashchenko, {M. P.} and Kashchenko, {N. M.}",
year = "2019",
month = aug,
day = "1",
doi = "10.22226/2410-3535-2019-3-316-321",
language = "Русский",
volume = "9",
pages = "316--321",
journal = "Letters on Materials",
issn = "2218-5046",
publisher = "Институт проблем сверхпластичности металлов Российской академии наук",
number = "3",

}

RIS

TY - JOUR

T1 - О механизмах трансмутации висмута в расплаве BiPb под воздействием наносекундных электромагнитных импульсов

AU - Kashchenko, M. P.

AU - Kashchenko, N. M.

PY - 2019/8/1

Y1 - 2019/8/1

N2 - Воздействие наносекундных электромагнитных импульсов на расплав висмут-свинец позволило установить увеличение доли свинца благодаря превращению Bi → Pb. В качестве вероятного механизма перехода предполагался электронный захват. Допускалось также наличие в исходных образцах изотопов Bi210m, Bi208, Bi207. Однако захват электрона характерен лишь для Bi208, Bi207. Природный висмут представлен одним изотопом Bi209. Поэтому следует рассмотреть варианты превращений именно этого изотопа. Предполагается, что ведущую роль в превращении играет паровая фаза. Показано, что при наличии водяного пара возможно возрастание массы Δm > 0 расплава, как за счет взаимодействия ядер Bi209 с «квазинейтронами» (включая «нейтроиды» Сантилли и «гидрино» Миллса), так и с «псевдопротонами» и «протоидами» (два последних термина относятся к связанным состояниям протона с двумя электронами). Размеры cвязанных состояний существенно меньше боровского радиуса RB ≈ 5 ∙10−11 м. Приращение доли свинца происходит за счет изотопа Pb210. Напротив, интенсификация α-распадов в условиях электромагнитного импульсного воздействия должна сопровождаться приращением доли свинца за счет изотопа Pb206 и снижением массы расплава. В условиях изоляции расплава от водяного пара можно ожидать убыли массы расплава Δm < 0 за счет α-излучения ядер Bi209 с последующим улетучиванием гелия и накоплением изотопа Tl205. Распад ядер обусловлен интенсификацией туннельного эффекта. При этом не следует ожидать увеличения доли свинца за счет изотопа Pb207. Важно, что оценка значений Δm ~ 0.1 г для реальных экспериментов указывает на возможность ее надежного измерения. В заключение кратко обсуждаются перспективы исследований.

AB - Воздействие наносекундных электромагнитных импульсов на расплав висмут-свинец позволило установить увеличение доли свинца благодаря превращению Bi → Pb. В качестве вероятного механизма перехода предполагался электронный захват. Допускалось также наличие в исходных образцах изотопов Bi210m, Bi208, Bi207. Однако захват электрона характерен лишь для Bi208, Bi207. Природный висмут представлен одним изотопом Bi209. Поэтому следует рассмотреть варианты превращений именно этого изотопа. Предполагается, что ведущую роль в превращении играет паровая фаза. Показано, что при наличии водяного пара возможно возрастание массы Δm > 0 расплава, как за счет взаимодействия ядер Bi209 с «квазинейтронами» (включая «нейтроиды» Сантилли и «гидрино» Миллса), так и с «псевдопротонами» и «протоидами» (два последних термина относятся к связанным состояниям протона с двумя электронами). Размеры cвязанных состояний существенно меньше боровского радиуса RB ≈ 5 ∙10−11 м. Приращение доли свинца происходит за счет изотопа Pb210. Напротив, интенсификация α-распадов в условиях электромагнитного импульсного воздействия должна сопровождаться приращением доли свинца за счет изотопа Pb206 и снижением массы расплава. В условиях изоляции расплава от водяного пара можно ожидать убыли массы расплава Δm < 0 за счет α-излучения ядер Bi209 с последующим улетучиванием гелия и накоплением изотопа Tl205. Распад ядер обусловлен интенсификацией туннельного эффекта. При этом не следует ожидать увеличения доли свинца за счет изотопа Pb207. Важно, что оценка значений Δm ~ 0.1 г для реальных экспериментов указывает на возможность ее надежного измерения. В заключение кратко обсуждаются перспективы исследований.

KW - Bismuth transmutation

KW - Electromagnetic nano-pulses

KW - Quasineutrons

KW - Quasipositronium

KW - Tunnel effect

KW - electromagnetic nano-pulses

KW - VARIANTS

KW - tunnel effect

KW - quasineutrons

KW - quasipositronium

KW - bismuth transmutation

UR - http://www.scopus.com/inward/record.url?scp=85071395749&partnerID=8YFLogxK

UR - https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=tsmetrics&SrcApp=tsm_test&DestApp=WOS_CPL&DestLinkType=FullRecord&KeyUT=000483406300010

UR - https://elibrary.ru/item.asp?id=39253949

U2 - 10.22226/2410-3535-2019-3-316-321

DO - 10.22226/2410-3535-2019-3-316-321

M3 - Статья

AN - SCOPUS:85071395749

VL - 9

SP - 316

EP - 321

JO - Letters on Materials

JF - Letters on Materials

SN - 2218-5046

IS - 3

ER -

ID: 10470808