Работа направлена на разработку технологии производства тонкодисперсных (от 10 до 100 мкм) порошков титана и его сплавов, пригодных, после классификации и сфероидизации, для применения в аддитивных технологиях. В качестве электролита использовали эвтектическую смесь, мол. доли: BaCl2 - 0,16, CaCl2 - 0,47, NaCl - 0,37 - с температурой плавления 452 °С. Близкие по составу электролиты применяются в промышленности при электролитическом получении натрия с высоким выходом по току. Соли титана в электролит не вводили. Потери натрия за счет испарения, коррозии и перезаряда ионов восполняли периодическим повышением тока электролиза. В качестве анода использовали пластину из титана марки ВТ1-0. Катодом служили стенки стального тигля, на которых выделялся натрий и растворялся в электролите. Восстановление ионов титана происходило в объеме электролита и прианодном слое. Для интерпретации полученных результатов впервые использованы данные об электродных потенциалах систем Ti3+/Ti, Ti2+/Ti, Ti3+/Ti2+. Показано, что в первые 12 мин электролиза в прианодном слое растет концентрация малоподвижных комплексных ионов Ti3+, а растворенный в электролите натрий восстанавливает в объеме электролита в основном ионы Ti2+. Начиная с 20-й мин, при накоплении порошка титана в объеме электролита, в прианодном слое начинает ускоренно возрастать концентрация ионов Ti2+ по реакции: 2Ti3+ + Ti = 3Ti2+. Одновременно уменьшается доля натрия, расходующегося на восстановление ионов Ti3+ до Ti2+, что способствует повышению выхода по току и стабилизации на 30 мин потенциала катода при -2,963 В. После 50-й мин начинает снижаться реакционная активность солевого расплава, стабильно растет концентрация ионов Ti3+ до выравнивания ее на 85-й мин с концентрацией ионов Ti2+. Это резко увеличило затраты тока на перезаряд ионов и привело к необходимости, после кратковременного (на 40 с) включения тока 12 А, прекратить электролиз. Через 10 с, судя по изменению потенциала катода, практически весь натрий, растворенный в электролите, был израсходован на восстановление ионов титана. Через 6 мин потенциалы электродов вернулись к первоначальному значению потенциала анода, свидетельствуя о возвращении системы к исходному состоянию, где соли титана и растворенный натрий практически отсутствовали. Получено 95 % порошка в объеме электролита. Выход по току составил 84,0 % и оказался близким к рассчитанному по средней валентности ионов титана и убыли массы анода (87,0 %). После ультразвукового диспергирования более 80 % порошка находилось в диапазоне 10-100 мкм с максимумом при 36 мкм. Рентгенофазовый анализ показал, что это практически чистый α-титан (93,06 %) и насыщенный кислородом α-титан (5,45 %). Оригинальность работы состоит в применении объемного, интенсивного, электролитического способа получения тонкодисперсных порошков титана при отсутствии растворенного натрия и хлоридов титана в исходном и конечном электролитах, в ступенчатом повышении тока и потенциометрическом контроле процесса. Уникальность работы заключается в получаемом порошке титана, основная часть которого находится в объеме расплава в виде сростков, легко измельчаемых при ультразвуковом диспергировании на отдельные кристаллы. Более 80 % этих кристаллов находилось в требуемом для аддитивных технологий диапазоне 10-100 мкм со средним размером 36 мкм.
Translated title of the contributionProduction of finely dispersed titanium powder by volumetric reduction of its ions with sodium dissolved in the BaCl2–CaCl2–NaCl melt
Original languageRussian
Pages (from-to)4-16
Number of pages13
JournalИзвестия высших учебных заведений. Порошковая металлургия и функциональные покрытия
Volume16
Issue number1
DOIs
Publication statusPublished - 2022

    Level of Research Output

  • VAK List
  • Russian Science Citation Index

    GRNTI

  • 53.00.00 METALLURGY

    ASJC Scopus subject areas

  • Ceramics and Composites
  • Metals and Alloys
  • Surfaces, Coatings and Films
  • Materials Science (miscellaneous)

ID: 29857669