Standard

Harvard

APA

Vancouver

Author

BibTeX

@article{832aea0fa31c464599dae4fec1b948c9,
title = "РАЗРАБОТКА МЕТОДА ОЦЕНКИ ДИНАМИЧЕСКОЙ УСТОЙЧИВОСТИ ЭНЕРГОСИСТЕМ НА ОСНОВЕ ПРИМЕНЕНИЯ ТЕОРИИ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА С УЧЁТОМ ТОПОЛОГИЧЕСКОЙ СВЯЗАННОСТИ СЕТИ",
abstract = "Развитие современных электроэнергетических систем связано с цифровизацией и увеличением потока данных от объектов электроэнергетики к центрам управления. С другой стороны, увеличение доли возобновляемых источников энергии приводит к увеличению неопределённости электрических режимов и снижению суммарной инерции, что накладывает новые требования к быстродействию процедуры оценки динамической устойчивости и противоаварийного управления. Применение традиционных детерминированных алгоритмов к анализу динамической устойчивости энергосистем в условиях ужесточающихся требований к быстродействию могут оказаться неэффективными. Для преодоления недостатков традиционных методов оценки динамической устойчивости энергосистем могут быть использованы методы искусственного интеллекта. Данный класс методов обладает значительным быстродействием обученных моделей и возможностью поиска закономерностей в данных, что делает его эффективным в условиях современных энергосистем. В работе представлены результаты разработки метода оценки динамической устойчивости энергосистемы на основе методов искусственного интеллекта с учётом топологической связанности электрической сети. Методика основана на применении алгоритма градиентного бустинга деревьев решений. Численное моделирование выполнено на модели IEEE39, реализованной в Matlab/Simulink, для реализации алгоритмов машинного обучения использована библиотека Scikit-learn языка программирования Python3. Для обучения алгоритма машинного обучения использовались углы нагрузок синхронных генераторов, уровни напряжения в узлах подключения синхронных генераторов к электрической сети, топология электрической сети, продолжительность и сопротивление короткого замыкания. В результате применения обученного алгоритма с учётом топологии электрической сети на тестовой выборке была получена точность в 91,5%. Точность работы на тестовой выборке без учёта топологической связанности элементов энергосистемы составила 81,6%.",
author = "Сенюк, {Михаил Дмитриевич} and Дмитриева, {Анна Алексеевна}",
year = "2022",
doi = "10.18503/2311-8318-2022-4(57)-12-19",
language = "Русский",
volume = "4 (57)",
pages = "12--19",
journal = "Электротехнические системы и комплексы",
issn = "2311-8318",
publisher = "Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования {"}Магнитогорский государственный технический университет им. Г.И. Носова{"}",

}

RIS

TY - JOUR

T1 - РАЗРАБОТКА МЕТОДА ОЦЕНКИ ДИНАМИЧЕСКОЙ УСТОЙЧИВОСТИ ЭНЕРГОСИСТЕМ НА ОСНОВЕ ПРИМЕНЕНИЯ ТЕОРИИ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА С УЧЁТОМ ТОПОЛОГИЧЕСКОЙ СВЯЗАННОСТИ СЕТИ

AU - Сенюк, Михаил Дмитриевич

AU - Дмитриева, Анна Алексеевна

PY - 2022

Y1 - 2022

N2 - Развитие современных электроэнергетических систем связано с цифровизацией и увеличением потока данных от объектов электроэнергетики к центрам управления. С другой стороны, увеличение доли возобновляемых источников энергии приводит к увеличению неопределённости электрических режимов и снижению суммарной инерции, что накладывает новые требования к быстродействию процедуры оценки динамической устойчивости и противоаварийного управления. Применение традиционных детерминированных алгоритмов к анализу динамической устойчивости энергосистем в условиях ужесточающихся требований к быстродействию могут оказаться неэффективными. Для преодоления недостатков традиционных методов оценки динамической устойчивости энергосистем могут быть использованы методы искусственного интеллекта. Данный класс методов обладает значительным быстродействием обученных моделей и возможностью поиска закономерностей в данных, что делает его эффективным в условиях современных энергосистем. В работе представлены результаты разработки метода оценки динамической устойчивости энергосистемы на основе методов искусственного интеллекта с учётом топологической связанности электрической сети. Методика основана на применении алгоритма градиентного бустинга деревьев решений. Численное моделирование выполнено на модели IEEE39, реализованной в Matlab/Simulink, для реализации алгоритмов машинного обучения использована библиотека Scikit-learn языка программирования Python3. Для обучения алгоритма машинного обучения использовались углы нагрузок синхронных генераторов, уровни напряжения в узлах подключения синхронных генераторов к электрической сети, топология электрической сети, продолжительность и сопротивление короткого замыкания. В результате применения обученного алгоритма с учётом топологии электрической сети на тестовой выборке была получена точность в 91,5%. Точность работы на тестовой выборке без учёта топологической связанности элементов энергосистемы составила 81,6%.

AB - Развитие современных электроэнергетических систем связано с цифровизацией и увеличением потока данных от объектов электроэнергетики к центрам управления. С другой стороны, увеличение доли возобновляемых источников энергии приводит к увеличению неопределённости электрических режимов и снижению суммарной инерции, что накладывает новые требования к быстродействию процедуры оценки динамической устойчивости и противоаварийного управления. Применение традиционных детерминированных алгоритмов к анализу динамической устойчивости энергосистем в условиях ужесточающихся требований к быстродействию могут оказаться неэффективными. Для преодоления недостатков традиционных методов оценки динамической устойчивости энергосистем могут быть использованы методы искусственного интеллекта. Данный класс методов обладает значительным быстродействием обученных моделей и возможностью поиска закономерностей в данных, что делает его эффективным в условиях современных энергосистем. В работе представлены результаты разработки метода оценки динамической устойчивости энергосистемы на основе методов искусственного интеллекта с учётом топологической связанности электрической сети. Методика основана на применении алгоритма градиентного бустинга деревьев решений. Численное моделирование выполнено на модели IEEE39, реализованной в Matlab/Simulink, для реализации алгоритмов машинного обучения использована библиотека Scikit-learn языка программирования Python3. Для обучения алгоритма машинного обучения использовались углы нагрузок синхронных генераторов, уровни напряжения в узлах подключения синхронных генераторов к электрической сети, топология электрической сети, продолжительность и сопротивление короткого замыкания. В результате применения обученного алгоритма с учётом топологии электрической сети на тестовой выборке была получена точность в 91,5%. Точность работы на тестовой выборке без учёта топологической связанности элементов энергосистемы составила 81,6%.

UR - https://www.elibrary.ru/item.asp?id=49996266

U2 - 10.18503/2311-8318-2022-4(57)-12-19

DO - 10.18503/2311-8318-2022-4(57)-12-19

M3 - Статья

VL - 4 (57)

SP - 12

EP - 19

JO - Электротехнические системы и комплексы

JF - Электротехнические системы и комплексы

SN - 2311-8318

ER -

ID: 33218613