1. 2024
  2. Crystallization kinetics in Cu50Zr42.5Ti7.5 bulk metallic glass

    Bykov, V., Kulikova, T., Kovalenko, D., Estemirova, S. & Ryltsev, R., 2024, в: Journal of Thermal Analysis and Calorimetry. 149, 6, стр. 2643-2651 9 стр.

    Результаты исследований: Вклад в журналСтатьяРецензирование

  3. 2023
  4. Accuracy, Performance, and Transferability of Interparticle Potentials for Al–Cu Alloys: Comparison of Embedded Atom and Deep Machine Learning Models

    Khazieva, E., Shchelkatchev, N. M., Tipeev, A. & Ryltsev, R., 1 дек. 2023, в: Journal of Experimental and Theoretical Physics. 137, 6, стр. 864-877 14 стр.

    Результаты исследований: Вклад в журналСтатьяРецензирование

  5. First-principles calculations of the viscosity in multicomponent metallic melts: Al-Cu-Ni as a test case

    Kondratyuk, N., Ryltsev, R., Ankudinov, V. & Chtchelkatchev, N., 1 июн. 2023, в: Journal of Molecular Liquids. 380, 121751.

    Результаты исследований: Вклад в журналСтатьяРецензирование

  6. Description of a glass transition with immeasurable structural relaxation time

    Chtchelkatchev, N. M., Ryltsev, R. E., Mikheyenkov, A. V., Valiulin, V. E. & Polishchuk, I. Y., апр. 2023, в: Physica A: Statistical Mechanics and its Applications. 615, 128610.

    Результаты исследований: Вклад в журналСтатьяРецензирование

  7. Liquid–Crystal Structure Inheritance in Machine Learning Potentials for Network-Forming Systems

    Balyakin, I. A., Ryltsev, R. E. & Chtchelkatchev, N. M., 1 мар. 2023, в: JETP Letters. 117, 5, стр. 370-376 7 стр.

    Результаты исследований: Вклад в журналСтатьяРецензирование

  8. Local structure, thermodynamics, and melting of boron phosphide at high pressures by deep learning-driven ab initio simulations

    Chtchelkatchev, N. M., Ryltsev, R. E., Magnitskaya, M. V., Gorbunov, S. M., Cherednichenko, K. A., Solozhenko, V. L. & Brazhkin, V. V., 2023, в: Journal of Chemical Physics. 159, 6, 064507.

    Результаты исследований: Вклад в журналСтатьяРецензирование

  9. Machine learning-assisted MD simulation of melting in superheated AlCu validates the Classical Nucleation Theory

    Tipeev, A. O., Ryltsev, R. E., Chtchelkatchev, N. M., Ramprakash, S. & Zanotto, E. D., 2023, в: Journal of Molecular Liquids. 387, 122606.

    Результаты исследований: Вклад в журналСтатьяРецензирование

  10. Transport Properties of Equiatomic CoCrFeNi High-Entropy Alloy with a Single-Phase Face-Centered Cubic Structure

    Bykov, V. A., Kulikova, T. V., Sipatov, I. S., Sterkhov, E. V., Kovalenko, D. A. & Ryltsev, R. E., 2023, в: Crystals. 13, 11, 1567.

    Результаты исследований: Вклад в журналСтатьяРецензирование

  11. СТРУКТУРНАЯ НАСЛЕДСТВЕННОСТЬ ЖИДКОСТЬ-КРИСТАЛЛ В ПОТЕНЦИАЛАХ МАШИННОГО ОБУЧЕНИЯ ДЛЯ СЕТЕОБРАЗУЮЩИХ СИСТЕМ

    Балякин, И. А., Рыльцев, Р. Е. & Щелкачев, Н. М., 2023, в: Письма в Журнал экспериментальной и теоретической физики. 117, 5-6 (3), стр. 377-384 8 стр.

    Результаты исследований: Вклад в журналСтатьяРецензирование

  12. ТОЧНОСТЬ, ПРОИЗВОДИТЕЛЬНОСТЬ И ПЕРЕНОСИМОСТЬ МЕЖЧАСТИЧНЫХ ПОТЕНЦИАЛОВ ДЛЯ СПЛАВОВ AL-CU: СРАВНЕНИЕ МОДЕЛЕЙ ПОГРУЖЕННОГО АТОМА И ГЛУБОКОГО МАШИННОГО ОБУЧЕНИЯ

    Хазиева, Е. О., Щелкачев, Н. М., Типеев, А. О. & Рыльцев, Р. Е., 2023, в: Журнал экспериментальной и теоретической физики. 164, 6, стр. 980-995 6 стр.

    Результаты исследований: Вклад в журналСтатьяРецензирование

Назад 1 2 3 4 5 6 7 Далее

ID: 77963